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ABSTRACT

The execution of workloads such as web servers and database servers
typically switches back and forth between different tasks such as
user applications, system call handlers, and interrupt handlers. The
combined size of the instruction footprints of such tasks typically
exceeds that of the i-cache (16-32 KB). This causes a lot of i-cache
misses and thereby reduces the application’s performance. Hence, we
propose SchedTask, a hardware-assisted task scheduler that improves
the performance of such workloads by executing tasks with similar
instruction footprints on the same core. We start by decomposing the
combined execution of the OS and the applications into sequences
of instructions called SuperFunctions. We propose a scheme to
determine the amount of overlap between the instruction footprints
of different SuperFunctions by using Bloom filters. We then use
a hierarchical scheduler to execute SuperFunctions with similar
instruction footprints on the same core. For a suite of 8 popular
OS-intensive workloads, we report an increase in the application’s
performance of up to 29 percentage points (mean: 11.4 percentage
points) over state of the art scheduling techniques.
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1 INTRODUCTION

The execution of OS-intensive applications such as web servers and
database servers typically switches between different tasks such
as application code, system call handlers, and interrupt handlers.
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Previous works [7, 11, 16, 31, 35] have shown that the combined
size of the instruction footprints of these tasks typically exceeds that
of the i-cache (16-32 KB). Since traditional OS schedulers typically
execute these tasks on the same core, they evict each other’s i-cache
lines, and thereby reduce the overall performance of OS-intensive
applications by up to 50% [11, 35].

Several papers [7, 15, 29, 31, 35] have proposed to tackle this
problem through core specialization. Under this scheme, tasks with
dissimilar instruction footprints are executed on different cores.
FlexSC [35] and Disaggregated OS Services [29] execute user ap-
plications and system call handlers on separate cores. However,
these techniques are agnostic to asynchronous events such as inter-
rupts. Hence they do not perform well for IO intensive applications.
SLICC [7] is another state of the art core specialization technique.
It spreads the i-cache footprint of an application across different
cores and uses special hardware to migrate a thread to a core that
may contain the i-cache line, which it may access next. However,
this technique does not allow an idle core to steal pending threads
waiting at other cores. Hence, it suffers from high core-idleness
when there is a significant imbalance of work across cores.
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Figure 1: An overview of the SchedTask technique

This paper proposes SchedTask, a hardware-assisted fine-grained
scheduler for OS-intensive applications. We start by decomposing
the combined execution of the OS and the applications into se-
quences of instructions called SuperFunctions. We then propose a
scheme that determines the amount of overlapping sequences of in-
structions between different SuperFunctions using a hardware based
Bloom filter. Those SuperFunctions that are deemed similar are
scheduled on the same core, resulting in reduced i-cache pollution.

We first characterize the execution of 8 popular OS-intensive ap-
plications and show that there is a high correlation between the type
and the number of SuperFunctions that are executed in consecutive
epochs (fixed intervals of time). Therefore, by profiling (at run-time)
the SuperFunctions that are executed in an epoch, we can make
better decisions regarding how to schedule SuperFunctions in the
next epoch.

A core might become idle if all SuperFunctions that are currently
being executed are scheduled to run on other cores. We show that it is
possible to improve the performance by scheduling a SuperFunction
that is already assigned to one of the other cores to run on the idle
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core. This work stealing approach works as long as the selected
SuperFunction executes instructions that are already in the i-cache
of the idle core.

Specifically, this paper makes the following contributions:

(1) A fine-grained decomposition of a thread’s execution into
SuperFunctions.

(2) A technique to quantify the overlap between SuperFunctions
at run-time and then appropriately schedule them using a
two-pass technique.

(3) A novel work-stealing algorithm to increase the instruction
execution throughput by scheduling a suitable SuperFunction
on an idle core, thereby improving the performance.

We evaluate our approach for a suite of 8 popular OS-intensive
applications. For these applications, we show that the performance
benefit of SchedTask is better than that of the state of the art sched-
uling technique SLICC by up to 29 percentage points (mean: 11.4
percentage points).

We discuss the related work in Section 2 and the details of Super-
Functions in Section 3. We then discuss the benchmarks and their
characterization in Section 4 and the details of our implementation
in Section 5. Finally, we discuss the main results in Section 6. We
discuss additional results pertaining to the compared techniques in
the appendix [5].

2 RELATED WORK

2.1 Core Specialization

Futuristic operating systems such as Corey [13], Factored OS [38],
and Barrelfish [9] follow the principle of core specialization. They
model the operating system as a server, which runs on a selected set
of cores. Applications use remote procedure calls (RPC) to submit
system call requests. However, these operating systems still do not
support the popular OS-intensive applications such as Apache web
server or the MySQL database server. We find that the functionality
of these operating systems is still very restrictive and it will take
time for them to reach the maturity of a traditional operating system
such as Linux.

Several papers [7, 8, 15, 21, 29-31, 35] have recently proposed
core specialization solutions for traditional operating systems. Se-
lective offloading [31] uses twice the number of cores as a normal
system; half the cores are reserved to execute application code and
the rest half are reserved to execute OS code. Threads execute the
application code on application cores and are transferred to an OS
core if they execute a system call instruction. The primary drawback
of this technique is that it lacks a load balancing algorithm. Even
if an application core is idle, it cannot execute applications that are
waiting to execute on other application cores. Additionally, they do
not specialize OS cores for specific OS tasks. Hence, we observe
high i-cache pollution in the OS cores. In Section 6, we show that
even while consuming half of the area (for the cores) of the Selective
offloading technique [31], SchedTask outperforms their technique by
around 12.5%.

FlexSC [35] executes user applications and system call handlers
on separate cores. It executes application threads on top of a spe-
cial user-level scheduler. The scheduler takes a system call request
from the application thread and offloads it to special OS threads
that execute on different cores. It then executes another runnable
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thread belonging to the same application. When a single-threaded
application calls the user-level scheduler, it offloads the system call’s
execution to OS threads and then yields execution to the Linux
scheduler. As we show in Section 6.1, executing the Linux scheduler
for every system call can lead to a slowdown of up to 63%.

Disaggregated OS Services [29] improves upon the FlexSC tech-
nique in multiple ways. It divides the user applications, and groups
the system call handlers into multiple regions; each region is exe-
cuted on different cores. It then uses a scheduler to migrate a thread
from one core to another based on the data region that it is accessing.
While the authors propose a runtime region detection algorithm for
application code, the regions accessed by the OS code are identified
by the OS programmer. For example, all filesystem related system
calls are treated as accessing the same data region. Like FlexSC this
technique also ignores i-cache pollution due to OS tasks such as the
scheduler or interrupt top-half and bottom-half [39] handlers.

SLICC [7] is a hardware technique that reduces the i-cache misses
of OLTP workloads. SLICC spreads the i-cache footprint of an
application across multiple cores, and uses a hardware unit to migrate
threads between these cores. The hardware migration algorithm
of SLICC is agnostic to OS events such as system call handlers.
Hence, while the technique is able to group common portions of
application+OS execution across threads of the same application,
it fails to take advantage of common OS execution across different
applications. Consequently, the performance of SLICC suffers when
multiple OS-intensive applications are executing at the same time.
STREX [8], a recently proposed technique also uses a hardware
module to reduce i-cache misses of OLTP workloads. STREX time-
multiplexes the execution of similar transactions on a single core
such that the instructions fetched by one transaction are reused by
subsequently executed transactions. However, as mentioned in the
original paper, SLICC outperforms STREX for a 32-core system.
We thus compare our technique against the SLICC technique (omit
STREX) in Section 6.

2.2 Architectural Support

2.2.1 Additional Caches. Nellans et al. [31], Chandran et al.
[16], and Bhalla et al. [11] propose to reduce the i-cache pollution
in OS-intensive applications by storing the lines belonging to the
application and the OS in separate caches instead of the same cache.
Bhalla et al. [11] have additionally considered a third cache to store
hypervisor lines. The main drawback of this line of work is the 100%
area overhead of the additional caches, along with the complexity of
the logic to locate, and migrate lines between the caches.

2.2.2 Instruction Prefetching. Instruction prefetching is an
alternate approach to improve the performance of OS-intensive ap-
plications. PIF [18] and RDIP [26] are the most advanced instruction
prefetchers that are implemented completely in hardware. However,
these schemes require additional hardware structures of 64-200 KB
per core, which makes it difficult to deploy such schemes in real
hardware. Other notable instruction prefetchers such as pTask [25]
and CGP [6] require recompilation of the user applications, which
makes such schemes unsuitable for systems that rely on third party
binaries.
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Choice of instruction footprint as a scheduling parameter: For
OS-intensive applications, giving attention to i-cache misses as op-
posed to d-cache misses is a standard design decision taken in almost
all the related work [6-8, 11, 15, 18, 25, 26, 35]. This is because
OS-intensive applications have low i-cache hit rates (80-90%). Ad-
ditionally, optimizations in modern processors (OOO pipelines, load
store queues, data prefetchers) already hide the latencies of d-cache
misses. It can happen that collaterally d-cache misses reduce (as in
our case); however, this is not any design’s primary objective.

3 SUPERFUNCTION

System execution

\ U 1 ¥
Applifation System Call Interrupt Bottom Half
I

Apache read write) fork) (disk ‘network transmit n/w packet

Figure 2: Decomposition of the system execution (Apache)

As shown in Figure 2, let us decompose the code running on a
system into four categories: (1) applications, (2) system call handlers,
(3) interrupt handlers, and (4) bottom-half handlers. For example, an
Apache executable is an application. read and write are examples of
system call handlers. This decomposition helps us in finding pieces
of code that have a predictable pattern of execution. We shall use
this high level notion to define a SuperFunction.

In formal terms, a SuperFunction is defined as an ordered list of
triplets <pc,t, c>, where pc is the program counter of the instruc-
tion that was executed at time t on core c. It captures a sequence of
retired instructions. In this paper, we define four types of SuperFunc-
tions based on the type of the task (as shown in Figure 2). They are:
(1) application, (2) system call handler, (3) interrupt handler, and (4)
bottom half handler. A SuperFunction begins and ends on specific
OS events. They are as follows: (1) start of a user process, (2) system
call instruction, (3) hardware interrupt, and (4) invocation of a bot-
tom half handler’s routine. When a SuperFunction terminates, a new
SuperFunction begins. Note that by our definition, if two instances
of the read system call are executing concurrently, then each of them
represents a different SuperFunction. Let us elaborate further.

An application SuperFunction is the entire user-mode execu-
tion of a process. It is created by the fork system call handler and
continues till the process completes execution. In contrast, the OS
SuperFunctions are merely event handlers that are executed in re-
sponse to OS-specific events. These trigger events are: system call
instructions for system call handlers, interrupts for interrupt han-
dlers, and function calls to bottom-half handler routines for bottom
half handlers. When a core receives a hardware interrupt, it pauses
the currently executing SuperFunction and starts the interrupt Su-
perFunction. On completing the interrupt handler, the previously
paused SuperFunction resumes execution.

Let us discuss the insights regarding why we define SuperFunc-
tions this way. Consider two threads of the Apache program running
separately. Both will execute the read system call, and their instruc-
tion and data footprints will be roughly similar. If the execution
of these code sequences are scheduled on the same core, we can
take advantage of locality effects. Moreover, it is possible that the
execution of the read system call of Apache might actually be not
that different from the execution of the read system call of MySQL.
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We would benefit by locality in this case as well. Stretching the
argument further, in a heterogeneous ensemble of tasks, we wish
to find all the similar sequences of execution, such that we can co-
locate these execution segments, and take the fullest advantage of
locality. For this purpose, we need to break the execution of a typical
system intensive workload by inserting artificial boundaries (create
SuperFunctions), and then try to find similarities. We shall discuss
mechanisms to identify similarities across SuperFunctions in Sec-
tion 3.1 and Section 3.2. Our scheduler uses these mechanisms to
schedule the execution of similar SuperFunctions on the same core;
we shall discuss it in Section 5.

3.1 Type of Task

SuperFunction Category ID Sub-category ID
(2 bits) (62 bits)
System call handler 0 System call ID
Interrupt handler 1 Interrupt ID
Bottom half handler 2 Program counter of the bottom
half handler’s function
User application 3 Checksum of the code pages

Table 1: Category and subcategory of SuperFunctions

We encode the type of the task that a SuperFunction is performing
in a 64-bit number called the superFuncType. Since SuperFunctions
performing the same type of task typically have similar instruc-
tion footprints, SchedTask executes SuperFunctions with the same
superFuncType on the same core.

superFuncType represents a task’s category and subcategory. Ta-
ble 1 shows the value that we assign to each category and subcategory
of tasks. In a 64-bit superFuncType, first 2 bits represent the task’s
category, and the remaining 62 bits represent its subcategory.

An OS SuperFunction is executed in response to an OS event;
we use the event’s property to encode its superFuncType. Hence, the
superFuncType of a read system call handler! will be 3 irrespective
of the application that called it. Similarly the superFuncType of a
keyboard generated interrupt? will be 0X4000000000000001 irre-
spective of the application that is consuming the keyboard’s input.

Application SuperFunctions: We define an application’s super-
FuncType as a hash of all code pages that it accesses at runtime. At
the beginning of an application’s execution, we set its superFunc-
Type to 0 and disable the execute permission for all its code pages.
When the OS receives a security exception for a valid code page of
the application, it computes a hash of the code page contents and
adds it to the application’s superFuncType. Then the OS enables
the execute permission of the code page and resumes the applica-
tion’s execution. All threads belonging to the same application have
the same superFuncType. Since the hash computation is performed
only once for each code page, the execution overhead of creating an
application’s superFuncType is miniscule (< 0.0001%).

3.2 Similarity between Different Types of Tasks

Consider a scenario where three SuperFunctions: read, pread, and
fork system call handlers are simultaneously created by different

Isystem call ID 3 for Linux 2.6
Zinterrupt ID 1 for Linux 2.6
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threads. If SchedTask is forced to execute two of them on the same
core, it will choose to execute pread and read on the same core
because they mostly execute the same set of instructions. This deci-
sion will improve the instruction locality and thereby improve the
application’s performance. Notice that each of these SuperFunctions
has a different superFuncType. Hence, we need a mechanism to
identify the similarity between different superFuncTypes.

SchedTask quantifies the similarity between two superFuncTypes
as the number of common physical pages (containing instructions)
accessed. Since two applications sharing the same executable (e.g.:
two instances of scp applications) or the same library (e.g.: 1ibc. so)
can use different virtual addresses to access the same i-cache lines,
the overlap between different superFuncTypes must be detected in
terms of physical page frames and not virtual pages. A summary
of all the physical page frame numbers (PFN) of all instructions
executed for a particular superFuncType is stored in a 512-bit vec-
tor called the Page-heatmap. This contains a hash of all the PFNs
accessed, and this hash is produced by a Bloom filter [12].

We want to capture the PEN of all the instructions that Super-
Functions belonging to a particular superFuncType have accessed
in the last time-epoch. Hence we do this: At the start of an epoch,
the Page-heatmap associated with each superFuncType is set to
all zeros. Before executing a SuperFunction, SchedTask loads its
superFuncType’s Page-heatmap in a special register called the Page-
heatmap register. When an instruction with PFN pf is committed
in the pipeline, we set the (hash(pf) mod 512)" bit of the Page-
heatmap register to true. We define: hash(pf) = (pf) + (pf >
9+ (pf>18)+(pf>27)+ (pf > 36)+ (pf > 45). Note that
we need only 9 bits to index the 512-bit Page-heatmap register and
the PFN is 52 bits? long. Hence, we perform five right-shift opera-
tions (9,18,27,36,45) on the PEN to consider all of its 52 bits in the
hash function of the Bloom filter.

Page-heatmap of superFuncType1
0 - 0 0 0 - 0 - 0 1
Page-heatmap of superFuncType2
1 - 0 0 0 - 0 - 0 0
Overlap(superFuncType1, superFuncType2) = 3 [#common 1’s]

Figure 3: Quantifying the similarity between two superFunc-

Types

At the end of a time-epoch, we calculate the similarity between
two superFuncTypes as the Hamming weight (number of 1s) of
the bit-vector representing the bitwise-and of their respective Page-
heatmaps (see Figure 3 for an example scenario). The extra hard-
ware required to calculate this similarity is: (1) 512-bit Page-heatmap
register, (2) hardware to implement the hash function, and (3) as-
sembly instructions to load and store the Page-heatmap register. The
Page-heatmap values of different superFuncTypes are maintained in
the kernel’s address space for security reasons. We calculate the sim-
ilarity between Page-heatmaps vectors by breaking a single 512-bit
bitwise-and operation into sixteen 32-bit operations (supported by
existing hardware).

Keeping storage requirements and performance in mind, we chose
to compute the similarity in instruction footprints at the granularity

3 Assuming a 64 bit physical address and a page offset of 12 bits
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of pages. Furthermore, we limit the number of bits in our Bloom
filter to 512. We shall discuss the consequences of such choices
in Section 6.5. Note that in an alternate rendition of this idea, it is
possible to give the capability to user applications and/or the kernel
to modify the Page-heatmap register in software. However, since
the OS can change the page mappings of an application at runtime,
the software approach must map each instruction’s virtual address
to its PFN at runtime; the overhead of executing extra mapping
instructions by accessing the TLB/page tables will cause a significant
slowdown in the application’s execution. Recent works [3, 32, 37]
have shown that exposing the virtual to physical page mapping to
user applications can cause security vulnerabilities. Hence, modern
operating systems do not allow non-root applications to access the
address mapping [2] and therefore a software-based approach would
not be applicable in scenarios where non-root users are running OS-
intensive applications on the same server. Keeping all these issues in
mind, we did not follow the software-based approach.

3.3 Structure associated with a SuperFunction

Our scheduler does NOT change the original algorithm of any Super-
Function. It merely governs when and where should a SuperFunction
run. To do so, we execute a special code snippet at the start of a
SuperFunction’s execution. This code creates a structure describ-
ing the upcoming SuperFunction. It then calls scheduler routines
that decide when and where should the upcoming SuperFunction
run. Let us first discuss the information that we maintain for each
SuperFunction. We shall discuss the scheduler routines in Section 5.

‘We maintain the following information for each SuperFunction:

(1) superFuncType: described in Section 3.1.

(2) superFuncID: unique 64-bit number that is assigned to each
SuperFunction.

(3) parentSuperFuncPtr: address of the parent SuperFunction’s
structure. We define a hierarchical relation between Super-
Functions so that we can transfer the execution of a thread
from a SuperFunction to the one it was called from. We shall
discuss the usage of this field in Section 5.1.

(4) tid: ID of the thread that created the SuperFunction.

(5) corelD: ID of the core that is currently handling the Super-
Function.

superFuncID: Assuming that the system has n cores, the i’ core

assigns superFuncIDs sequentially in the range [%, w -
1]. If the range is exhausted, the superFuncID assignment wraps
around. We do not maintain a global superFuncID counter because
as pointed by Boyd-Wickizer et al. [14], such a counter can lead to
a performance bottleneck when multiple cores are simultaneously
creating a SuperFunction.

4 BENCHMARK CHARACTERIZATION
4.1 Experimental Setup

We use a modified version of the full system emulator, Qemu [10], to
collect the execution trace of the entire system. The execution trace
contains information that is sufficient to perform a detailed timing
simulation: list of retired instructions, load/store addresses, branch
outcomes, and OS-specific events such as interrupts and system
calls. We subsequently feed these traces to a detailed cycle-accurate
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simulator, Tejas [33]. Table 2 shows the details of our simulated
system.

Parameter | Value [[  Parameter | Value
Cores | 32 u Technology | 22nm
Pipeline
Retire Width 4 Integer RF (phy) 160
ROB Size 168 Branch Predictor TAGE
iTLB 128 entry dTLB 128 entry
L1 i-cache, d-cache (Private caches)
Associativity | 4 I Size [ 32KB
Latency | 3cycles || |
L2 cache (Private cache)
Associativity 4 [ Size 256 KB
Latency 8cycles |
Coherence Directory based MOESI

L3 cache (Shared NUCA cache)

Associativity | 8 I Size [ 8 MB
Avg. Latency | 18cycles |] |
oS [ Debian GNU/Linux 6.0.1 squeeze

Table 2: Baseline System Details

4.2 Benchmarks

We evaluate our technique for a suite of 8 popular OS-intensive
benchmarks. Our choice of applications is inspired by previous
work [7, 11, 18, 26, 31, 35] that also improve the performance of
OS-intensive benchmarks.

(1) Find: This benchmark simulates the execution of an applica-
tion that browses the local filesystem. Specifically, we execute
the Linux command find to search for a file in a large ext3
file system, starting from the root directory.

(2) Iscp: This benchmark simulates the execution of a large
network-copy over a secure connection. Specifically, we ex-
ecute the Linux command scp to copy a 10 GB file from a
remote machine to the local machine.

(3) Oscp: This benchmark is similar to the Iscp application,
except that it copies a file from the local machine to a remote
machine.

(4) Apache: This benchmark simulates the execution of a web
server. Specifically, we execute the Apache web server on
the local machine and use the ApacheBench utility to re-
quest web pages from a remote machine. We configure the
ApacheBench utility to request 96 web pages simultaneously;
this corresponds to 3 web pages for each core.

(5) DSS: This benchmark simulates the execution of a decision
control system. Specifically, we execute the minimal cost
supplier query of the TPC-H benchmark [4] for a database
of 1 GB; we use a MySQL database server.

(6) FileSrv: This benchmark simulates the execution of a file
server that serves concurrent filesystem requests such as read,
write, create, and delete on the local filesystem. Specifically,
we execute the fileserver workload of Filebench [1] with
400 threads.

(7) MailSrvIO: This benchmark simulates the execution of a
filesystem related system calls for a hypothetical mail server.

Specifically, we execute the mailserver workload of Filebench [1]

with 96 threads.

(8) OLTP: This benchmark simulates the execution of a data-
base server. Specifically, we execute the OLTP workload of
Sysbench [27] with 96 threads.

MICRO-50, October 14-18, 2017, Cambridge, MA, USA

The first 3 benchmarks (Find, Iscp and Oscp) are single-threaded,
and the remaining 5 benchmarks are multi-threaded. For evaluating
the impact of different core specialization techniques on single-
threaded benchmarks, we simulate one instance of the application
on each core of the system. We now discuss the characterization
results of each benchmark for a representative block of 1 billion
instructions per core (akin to [7, 8, 18]).

4.3 Instruction Breakup

Application NN Interrupt
System call  EZE@ Bottom half

Fraction (%)

Figure 4: Instruction breakup
Figure 4 shows a breakup of instructions for a system using

the Linux scheduler. We show the fraction of execution (in terms
of instructions) of each SuperFunction category: (1) application,
(2) system call handler, (3) interrupt handler, and (4) bottom-half
handler. As we seek to replace the Linux scheduler with a new
scheduler, we ignore the execution of the Linux scheduler routines
in the instruction breakup. We use the binary of the Linux kernel to
determine which instructions of the trace correspond to the start of
the scheduler and the bottom-half routines. Now let us understand
the instruction breakup of each benchmark in detail.

Find searches for a specific filename in the inode structures of the
directories recursively; as the search operation is relatively simple,
the fraction of execution of its application SuperFunction is low
(around 35%). Majority of the system call SuperFunctions executed
by Find are related to filesystem browsing. Since Iscp decrypts the
entire data that it reads over the network-socket, the fraction of
execution of its application SuperFunction is high. The instruction
breakup of Oscp is similar to that of the Iscp benchmark primarily be-
cause the nature of both the benchmarks is similar. Apache executes
a lot of system calls for handling web page requests; most of these
system calls are related to socket-create, and network read/write
operations. Consequently, the fraction of execution of its system
call handlers is high (around 35%). Additionally, since a web server
receives a lot of network interrupts, Apache executes a lot of inter-
rupt and bottom-half handlers; this is reflected in the high fraction
of execution of its bottom-half handlers (around 20%). Since DSS
executes long search and aggregate operations on database records,
the fraction of execution of its application SuperFunctions is high
(around 80%). FileSrv executes a lot of filesystem related system
calls. As it interacts heavily with the hard disks, it receives a lot
of disk interrupts; hence, the fraction of execution of bottom half
handlers is high (around 35%). MailSrvIO, like FileSrv also executes
a lot of filesystem related system calls. Hence, the fraction of exe-
cution of its system call handlers is high (around 70%). OLTP, like
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DSS also reads database records from the disk and then performs
search operations on them; hence, the instruction breakups of both
these benchmarks are similar.

4.4 Instruction Breakup: Similarity across Epochs

We now study the similarity between the instruction breakups of
SuperFunctions across two consecutive epochs of execution. We
consider time-epochs of 3 ms (inspired by previous works [11, 36]).
We represent an instruction breakup as a vector of n elements, where
each element denotes the execution fraction(%) of a particular type
of SuperFunction. We measure the similarity between the instruction
breakups of two epochs as the cosine similarity of the vectors rep-
resenting their instruction breakups. The cosine similarity between
two vectors A and B of length n is defined as:

:-1:1 A;.B;

VEL AR B2

Its ranges from — 1 meaning exactly opposite, to +1 meaning exactly
the same, with O indicating no correlation. For all benchmarks, we
observe the same pattern while computing the cosine similarity of
instruction breakups across two consecutive epochs of execution: the
similarity of instruction breakups between two consecutive epochs is
low (0-0.3) when a benchmark begins execution, it increases as the
benchmark executes more and more epochs, and finally, stabilizes
at high similarity values (> 0.995). This behavior is expected as the
code that an OS-intensive application executes at the beginning of its
execution (/ibC initialization, allocating data structures) is typically
not executed again. However, as the main loops in a benchmark
begin to execute, we observe that similar SuperFunctions execute
repeatedly.

The main takeaway from this section is that the execution of
OS-intensive applications is highly repetitive. Hence, we can use a
simple scheduler that collects the running times of SuperFunctions
in one epoch, and use the same to create a schedule for the next
epoch. During an epoch’s execution, SchedTask simply migrates
SuperFunctions to the most appropriate cores when they start ex-
ecution. We now discuss the details of our scheduler in the next
section.

Cosine similarity (A,B) = (1)

5 SCHEDTASK
5.1 The Timeline of a Thread’s Execution

Figure 5 shows how an application thread is executed on a system
with the proposed technique. At the beginning of the epoch, an OS
function called TAlloc is executed on core 0. This function maintains
an in-memory system-wide allocation table that was created at
system initialization time. An allocation table stores information
regarding which core should execute which type of SuperFunction.
The scheduler uses it to migrate a thread between cores depending
on the type of SuperFunction that it is going to execute next. In this
example, we begin the execution on core 0.

When TAlloc gets executed, it updates the allocation table accord-
ing to the profile that has been collected in the previous epoch. Then,
another OS function called TMigrate gets executed. Based on the
type of the SuperFunction that is going to be executed next, TMigrate
decides on which core the thread should run, possibly migrating it
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Figure 5: Timeline of a thread’s execution

to another core. We assume in this example that the allocation table
indicates that the application X SuperFunction should run on core
0. Therefore, TMigrate schedules the thread to run on core 0. Note
that because TMigrate has to schedule every SuperFunction, it has
to run after every SuperFunction on all cores. Suppose that applica-
tion X is going to perform the read system call, which is a different
SuperFunction, the execution is trapped and the TMigrate function
is invoked again to schedule it. According to the allocation table,
the read system call handler should run on core 1. Consequently,
TMigrate decides to migrate the thread to core 1 and the read sys-
tem call handler will be executed there. Meanwhile, a TMigrate
function running on another core might schedule a SuperFunction
to run on core 0. If this was the case, then core 0 will execute the
SuperFunction rather than being idle.

Once the read system call handler completes, the execution is
trapped again and TMigrate gets executed. This time, however, TMi-
grate has to return to the application X SuperFunction rather than
scheduling a new SuperFunction. TMigrate recognizes this relation
through the parentSuperFuncPtr field and schedules the thread to
run on core 0.

Figure 6 shows the data structures used by TAlloc and TMigrate
for a scenario where a 4-core system is executing four types of of
SuperFunctions. Kindly refer to this figure when we introduce the
data structures in the subsequent text.

5.2 TAlloc

TAlloc is executed on core 0 at the start of each epoch. It maintains
three in-memory data structures: stats table, allocation table, and
overlap table. stats table stores the frequency, total execution time,
and the Page-heatmap of each superFuncType. TAlloc first aggre-
gates (see the aggregation operation in Figure 6) the per-core stats
table of the last time-epoch and updates the system-wide stats table.

TAlloc then allocates cores to each superFuncType in direct pro-
portion to its execution fraction in the last epoch; this information is
maintained in the allocation table. In Figure 6, each superFuncType
has an execution fraction of 25% in a 4-core system. Hence, we
allocate one core for each superFuncType (consider a homogeneous
system). Once the allocation table is created, we transfer each thread
to the core that is mapped to its SuperFunction’s superFuncType.
If an interrupt handler x is supposed to run on core y, then TAlloc
programs the interrupt controller to route interrupts of ID x to core y.
Interrupts whose IDs are not present in the stats table are mapped
to core 0 by default. In order to minimize the cost of transferring
threads from one core to another, we perform core allocation only
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Figure 6: SchedTask: High level design

if the cosine similarity of the execution fractions for the last two
epochs is less than 0.98.

Next, TAlloc creates the overlap table from the Page-heatmap
values of different superFuncTypes. For each superFuncType, over-
lap table stores a list of tuples <superFuncType, Page overlap> in
the decreasing order of the Page overlap values. We do not calcu-
late the Page overlap values between OS-specific and application
superFuncTypes.

5.3 TMigrate

TMigrate is the OS function that handles the execution of different
SuperFunctions on each core. Algorithm 1 shows the high level
approach of TMigrate and the functions that it executes.

TMigrate maintains three in-memory data structures for each
core: (1) executingSuperFunction, a pointer to the structure of the
SuperFunction that is being executed, (2) runnable queue, a queue
of all SuperFunctions that are ready to run, (3) waiting queue, a
queue of SuperFunctions that are waiting for some event; eg: a read
system call handler that is waiting for the disk interrupt controller to
bring a page from the disk to the main memory.

Collecting execution statistics: The TMigrate function calls the
startStatsCollection function before and the stopStatsCollection af-
ter each SuperFunction. These functions calculate the execution
statistics for each individual SuperFunction and add them to the
corresponding superFuncType’s entry in the stats table.

Start a SuperFunction: Before executing a SuperFunction, a
thread first creates its structure and then calls TMigrate. TMigrate
refers to the allocation table to decide which cores should execute
the new SuperFunction. If there is an option to choose one among
multiple cores, then the core that has the least waiting time is se-
lected. The waiting time of a core is equal to the sum of the average
execution time of all SuperFunctions that are present in its runnable
queue. TMigrate migrates the SuperFunction to the selected core
by appending it to the core’s runnable queue. The runnable queue
is updated using a lock-free implementation. If the allocation table

Algorithm 1 TMigrate

1: procedure EXECUTENEXTRUNNABLETASK

2: if runnableQueue.isEmpty() then

3: stealWorkO fOtherCores()

4: currentSF < runnableQueue.removeHead )

5: procedure STEALWORKOFOTHERCORES

6: sf + stealWork(strategy = SAME W ORK -ONLY)

7 if sf'=NULL then

8: addToRunnableQueue(sf) return

9: else

10: multipleSF < stealWork(strategy = SIMILAR.-W ORK _ALSO)
11: if multipleSF!=NULL then

12: addAllToRunnableQueue(multipleSF) return
13: else

14: idle()

15: procedure STARTSUPERFUNCTION(SuperFunction s)

16: cores < getAllocationTableEntry(allocationTable,s.superFuncType)
17: if cores.isEmpty() then

18: addToRunnableQueue(currentCore,s)

19: else
20: core  selectCoreT hatHasLeastWaitingTime(cores)
21: addToRunnableQueue(core, s)
22: if isInldleState(core) then
23: sendInterProcessorInterrupt(core)

24: procedure STOPSUPERFUNCTION(SuperFunction s)

25: deallocateRecord(s)

26: executeNextRunnableTask()

27: procedure STARTSTATSCOLLECTION

28: startTimeForSF <+ getCurrentTime()

29: clearFuncHeatMapRegister()

30: initializeStateForRunning(current SF)

31: procedure STOPSTATSCOLLECTION

32: entry < getPerCoreStatsTableEntry(currentSF.superFuncType)

33: entry.execTime = entry.execTime + (getCurrentTime() — startTimeForSF )
34: entry. funcHeatMap = bitwiseOR (entry. funcHeatMap, funcHeatMapRegister)
35: procedure TMIGRATE(requestType, requestPayload)

36: stopStatsCollection()

37: if requestType==START_SUPER_FUNCTION then

38: startSuperF unction(request Payload )

39: else if requestType==STOP_SUPER_FUNCTION then
40: stopSuperFunction(requestPayload)

41: else if requestType==PAUSE_SUPER_FUNCTION then
42: pauseSuperFunction(request Payload)

43: else if requestType==WAKEUP_SUPER_FUNCTION then
44: wakeupSuperFunction(requestPayload )

45: startStatsCollection()

does not contain any entry for the SuperFunction’s superFuncType,
it is executed on the local core.
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Stop a SuperFunction: After completing a SuperFunction, TMi-
grate resumes the execution of its parent SuperFunction. It then
executes the SuperFunction at the head of its runnable queue. If the
runnable queue of the local core is empty, then TMigrate tries to
steal SuperFunctions from the runnable queue of other cores. It tries
two levels of work stealing in the following order:

(1) Steal same work only: This is the simplest choice to make. Steal
only those SuperFunctions whose superFuncType is mapped to the
local core. This strategy does not increase the possibility of i-cache
pollution and yet reduces core idleness. Given multiple cores to steal
from, an idle core always steals from the core with the maximum
waiting time. If no such thread is found, then TMigrate tries the next
level of work stealing.

(2) Steal similar work also: TMigrate now tries to steal Super-
Functions from the runnable queues of other cores. The stealing
algorithm gives a higher priority to those SuperFunctions whose
superFuncTypes have a high overlap with the ones that are allocated
to the local core. TMigrate first combines the overlap table entries of
all superFuncTypes that are mapped to its local core. It then iterates
over this list in the decreasing order of the Page overlap value. The
iteration stops when a SuperFunction with a particular superFunc-
Type is found in the runnable queue of another core. If there are
multiple such SuperFunctions in the remote core’s runnable queue,
then TMigrate steals half of them. Initially such SuperFunctions will
suffer from a low i-cache hit rate. To amortize this effort, the stealing
thread typically steals a few more similar SuperFunctions from other
cores. This strategy is used as the default scheme for evaluation.

Pausing a SuperFunction: When the executing SuperFunction
goes to the waiting state, TMigrate adds it to the waiting queue and
calls executeNextRunnableTask.

Waking up a SuperFunction: When the executing SuperFunc-
tion wants to wake up another SuperFunction, we merely move the
other SuperFunction from the waiting queue to the runnable queue.

5.4 Modifications

Software: The scheduler routines TAlloc and TMigrate are im-
plemented in the Linux kernel. TMigrate is called by special hooks
that are added to the start of all superFuncTypes.

Hardware: SchedTask requires hardware modifications to main-
tain the Page-heatmap of each superFuncType. These modifications
are: (1) adding a 512-bit register, (2) implementing the hash function
to map a PF'N to a bit in the heatmap register, and (3) special assem-
bly instructions to load and store heatmap values. These changes are
minimal (require < 0.01% core area) and they do not interfere with
the critical path of any instruction.

6 RESULTS
6.1 Comparison: Performance Improvement

We compare the performance benefits gained through five core spe-
cialization techniques: (1) SelectiveOffload [31], (2) FlexSC [35],
(3) DisAggregateOS [29], (4) SLICC [7], and (5) SchedTask. Table 2
shows the details of the baseline system and Table 3 shows the con-
figuration for each core specialization technique. Please read the
Appendix [5] for understanding the sensitivity of the results to:

(a) Multi-programmed workloads: multiple OS intensive applica-
tions are running simultaneously.
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Technique [ Configuration

|

SelectiveOffload [31] 64 core system. Offload system call handlers whose run length is greater

than 100 instructions.

FlexSC [35] Zero cycle delay for user-level scheduler. Specialize cores for all system

calls.

DisAggregateOS [29] Zero cycle delay for micro-scheduling.

SLICC [7] Zero cycle delay to search for remote tags. Size of the hardware compo-
nents are taken from the original paper.
SchedTask Our technique — see Section 5

Table 3: Configuration of all core specialization techniques

(b) Size of the instruction cache (16 KB, 32 KB, 64 KB).
(c) Cache configuration: 2-level, 3-level memory hierarchy.
(d) Number of cores (8, 16, 32, 64) in the system.

(e) Instruction prefetcher [6].

(f) Trace cache [28].

The additional results show that SchedTask is the best performing
technique across all evaluated configurations.

We evaluate all techniques on a cycle-accurate architectural simu-
lator, Tejas (verified vis-a-vis native hardware). The evaluation has
been performed on a simulator because: (a) three of the evaluated
techniques (including ours): SelectiveOffload, SLICC (state of the
art) and SchedTask propose non-trivial architectural changes and
hence, they cannot be evaluated with a purely software based frame-
work, and (b) the evaluated system (32 core out-of-order system) has
not been released by any vendor. Hence, we use the same approach
as the one used by highly cited recent work [7, 8, 17, 18, 26, 31].
Like our proposal, they also use architectural modifications to im-
prove the performance of OS-intensive applications. We inserted
hooks in the Linux kernel to invoke all the SchedTask routines. The
extra hardware support required for SchedTask (special assembly
instructions, Bloom filter, and Page-heatmap register) was emulated
using a patched version of the full system emulator, Qemu. Qemu
provides execution traces to the architectural simulator, Tejas.

A system running OS-intensive workloads runs a lot of threads;
if some threads are not ready, then a few cores may remain idle.
Hence, the standard practice employed in such systems is to spawn
more application threads than the number of cores in the system.
Hence, for all results shown here, we do this (also done by [7, 35]).
We treat the ensemble of all the individual benchmarks discussed
in Section 4.2 as the baseline workload and in our experiments we
double it. For single-threaded applications, this means spawning
twice the number of applications, and for multi-threaded applica-
tions, it means spawning twice the number of threads. In Section 6.3,
we discuss the impact of varying a benchmark’s workload on the
performance of these techniques.

Figure 7 shows the impact of each core specialization technique
on the application’s performance as compared to a baseline system
that employs the standard Linux scheduler. We calculate an appli-
cation’s performance as the number of application-specific events
that it performs in one second of system execution. For Find, an
application-specific event is searching an i-node entry; iscp and oscp,
it is receiving/transmitting a data packet; Apache, it is serving a web
page, DSS and OLTP, it is processing a query; FileSrv, it is complet-
ing a file-operation; MailSrvIO, it is completing a mail-operation.
We instrument the source code of each benchmark to count the
number of such events.

The mean (geometric) improvements in the application’s perfor-
mance for these techniques are: SelectiveOffload (10.62%), FlexSC
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Figure 7: Impact of core specialization techniques on applica-
tion’s performance

(-75% for all benchmarks and +10.08% for multi-threaded bench-
marks), DisAggregateOS (9.49%), SLICC (11.39%), and Sched-
Task (22.79%). SchedTask outperforms the state of the art technique
SLICC by 11.4%. We study six microarchitectural parameters to
understand the application performance results that are reported in
Figure 7:

(a) instruction throughput (#insts/second) (Figure 8a),

(b) fraction of time a core remains idle (Figure 8b),

(c) i-cache hit rate when the application code is executing (Fig-
ure 8c), and when the OS code is executing (Figure 8d), and

(d) d-cache hit rate when the application code is executing (Fig-
ure 8¢), and when the OS code is executing (Figure 8f).

On comparing Figure 7 and Figure 8a, we observe that the impact
of each technique on the application’s performance is roughly the

same as its impact on the instruction throughput. We observe two
changes. FlexSC’s impact on the performance of single-threaded
applications is much worse than its impact on the instruction through-
put. This is because FlexSC executes the OS scheduler each time a
single-threaded application executes a system call. Hence, the system
executes a lot of additional kernel instructions that contribute to-
wards the calculation of instruction throughput but do not contribute
to actual application work. Next, we observe that the application
performance of the proposed technique, SchedTask, is lower than its
instruction throughput by around 0.5-1%. This is because SchedTask
executes additional kernel instructions for the TMigrate routine; they
do not count as application’s work. The performance gap between
SchedTask and the state of the art SLICC is still high: 11.4 and 12.7
percentage points in terms application’s performance and instruction
throughput respectively.

The macro benchmarks considered in this work have sufficient
number of threads to overlap compute and 10 work. Also, as the
evaluation of such benchmarks in previous work [19, 20, 22, 24, 35?
] suggests, even with a substantial increase in the compute speed,
such macro benchmarks do not saturate the bandwidth of the 10
devices. Hence, increasing the compute speed leads to an increase in
the applications’ performance. Let us now analyze the performance
of each core specialization technique in detail.

SelectiveOffload: Since the SelectiveOffload technique lacks a
work stealing algorithm, the idle time fraction of SelectiveOffload
scheme is high: 50% (see Figure 8b). Owing to aggressive work
stealing algorithms, the idle time fractions of FlexSC and SchedTask
are almost 0%. SelectiveOffload executes only one application thread
on each application core. Hence, among all the evaluated techniques,
the i-cache hit rate of the application code is the highest for the
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Workload Technique Find Iscp Oscp Apache DSS FileSrv MailSrvIO OLTP geom. mean*®
Idle | Perf | Idle Perf | Idle | Perf | Idle Perf | Idle Perf | Idle Perf | Idle Perf | Idle | Perf | Idle Perf
SelectiveOffload 50 7 50 21 50 8 50 27 50 5 50 3 50 0 50 10 50 10
FlexSC 0 -51 0 -44 0 -55 0 13 0 5 0 5 0 18 0 4 0 -18
1X DisAggregateOS 39 -8 50 -4 41 -11 43 5 25 5 40 -6 53 -8 37 1 41 -3
SLICC 41 9 41 1 41 -8 37 -14 43 10 42 -12 39 -9 41 0 41 -5
SchedTask 18 4 13 17 20 14 11 17 5 1 0 42 7 22 7 2 10 14
SelectiveOffioad 50 7 50 21 50 8 50 27 50 5 50 3 50 0 50 10 50 10
FlexSC 0 -51 0 -44 0 -55 0 7 0 6 0 26 0 13 0 3 0 -18
2X DisAggregateOS 13 -1 19 13 11 5 13 20 6 6 13 18 20 4 9 4 13 8
SLICC 5 4 5 25 5 8 5 9 1 5 6 22 4 2 6 13 5 11
SchedTask 0 8 0 34 0 17 0 39 0 10 0 42 0 28 0 10 0 23
SelectiveOffioad 50 7 50 21 50 8 50 27 50 5 50 3 50 0 50 10 50 10
FlexSC 0 -51 0 -44 0 -55 0 20 0 7 0 6 0 14 0 4 0 -18
4X DisAggregateOS 5 3 8 10 3 9 5 28 1 8 4 24 7 14 2 3 4 12
SLICC 1 3 1 17 0 5 1 22 0 5 0 15 0 4 1 9 0 10
SchedTask 0 12 0 33 0 17 0 52 0 12 0 42 0 31 0 11 0 25
SelectiveOffload 50 7 50 21 50 8 50 27 50 5 50 3 50 0 50 10 50 10
FlexSC 0 -51 0 -44 0 -55 0 30 0 8 0 47 0 15 0 6 0 -13
8X DisAggregateOS 1 11 4 -4 0 18 1 35 0 8 1 51 2 20 1 5 1 17
SLICC 0 9 0 4 0 12 0 29 0 5 0 4 0 6 0 12 0 10
SchedTask 0 19 0 16 0 27 0 58 0 11 0 42 0 34 0 14 0 27

Idle — fraction of idle time (%). Perf — change in instruction throughput (%) relative to the baseline with the same workload

Table 4: Impact of the workload on the instruction throughput and idle time fractions

SelectiveOffload technique (see Figure 8c). SelectiveOffload has a
coarse grained mapping for OS cores; it executes all system call
handlers on the same core. Since different system call handlers evict
each other’s lines in the i-cache and the d-cache, SelectiveOffload
results in low i-cache and d-cache hit rates when the OS code is
executing (Figure 8d and Figure 8f). Overall SchedTask outperforms
SelectiveOffload because of lower core idleness, and higher i-cache
and d-cache hit rates for the OS code.

FlexSC: As discussed in Section 2, FlexSC executes the Linux
scheduler each time a single-threaded application executes a system
call. Hence, it’s performance for single-threaded applications is
low (mean: -98%); however, it’s performance for multi-threaded
benchmarks is high (mean: 10.08%). For multi-threaded applications,
a better performance of the SchedTask technique (mean: 25.37%) can
be attributed to two reasons: (1) a fine-grained core mapping, and (2)
a smarter work stealing algorithm. While FlexSC specializes cores
for system call handlers, it does not eliminate the i-cache pollution
due to interrupt and bottom half handlers. Additionally, FlexSC
migrates tasks from one core to another when there is an imbalance
in the run-queue sizes of different cores. While this strategy ensures
that the core idleness is minimal, it regularly migrates the OS threads
(that execute system call handlers) between different cores. This
decreases the data locality of the OS thread, and thereby leads to a
lower d-cache hit rate.

DisAggregateOS: Due to a fine-grained core mapping, the i-
cache hit rate for the application and the OS code are high for
DisAggregateOS. Additionally, because it maps system call handlers
that access the same d-cache lines on the same core, the d-cache hit
rate for OS code is also high for DisAggregateOS. However, owing to
the low idle time fraction, SchedTask outperforms DisAggregateOS.

SLICC performs well on the four parameters: i-cache hit rate for
application as well as OS code, and d-cache hit rate for application
as well as OS code. However, the mean idle time fraction for the
SLICC technique is around 5%, mainly because SLICC does not
allow an idle core to steal threads from other cores.

SchedTask performs the best among all the compared techniques.
The technique performs well on almost all the studied parameters.

Due to a fine-grained core mapping, the i-cache hit rates for the ap-
plication as well as OS code are high. Additionally, since SchedTask
uses a smart work stealing algorithm, its idle time fraction is low
(almost 0%) and its d-cache hit rates for application and OS code
are high.

Data locality: In a baseline Linux system, a system call handler
gets executed on the same core on which it got invoked. So if it got
invoked on multiple cores, the OS data structures that it accesses
are fetched into the respective data caches. If fetching that data
incurs any stalls, the overhead will be incurred on all of the cores.
In addition, if a shared cache line got modified by one of the cores,
there will be an additional overhead due to cache coherence. Since
SchedTask executes different instances of a system call handler on
the same core, the data used by the handler is loaded once into the
d-cache and reused in later executions of the handler. Hence, as
shown in Figure 8f SchedTask significantly improves the d-cache
hit rate of the OS code. A similar effect is also observed for the
application code for multi-threaded benchmarks.

Other statistics: Let us now discuss some more results, and
present aggregate statistics instead of benchmark wise results due to
a lack of space.

(1) SchedTask related overheads: The SchedTask technique re-
places the Linux scheduler with two components: TAlloc and TMi-
grate. We observe that the system spends a negligible amount of time
(< 0.01%) executing the TAlloc function. This is because TAlloc is
executed only once during each time-epoch of 3ms. On the other
hand, the TMigrate function is called at the start and the end of each
SuperFunction. Hence, it contributes much more (around 3.2%) to
the system’s execution. This is roughly the same amount of time that
the baseline Linux system spends executing its scheduler; impressive
speed ups in the program execution (around 24%) compensate for
the execution of SchedTask related routines. Through simulation
studies, we observe that the data state maintained by SchedTask
causes a reduction in the d-cache hit rate of the non-SchedTask codes
by 0.78%.

(2) TLB hit rates: Due to a reduction in the instruction and data
footprints on each core, the hit rates of the iTLB and dTLB also
increase by 0.98% and 0.65% respectively.
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Figure 9: Impact of work stealing strategies on different system parameters

(3) Interrupt latency: Since SchedTask steers many interrupts to
the same core, sometimes the interrupts have to wait before being
serviced. This increases the mean interrupt latency by around 0.53%.
This is miniscule.

(4) Fairness of scheduling: We measure the fairness of a schedule
by comparing the instruction throughput of all threads using Jain’s
fairness index [23]; its value ranges from Wleads (for a completely
unfair schedule) to 1.0 (for a completely fair schedule). The mean
fairness index for SchedTask is 0.99 indicating that SchedTask allo-
cates almost equal execution times to all threads. This is because we
use the FCFS strategy in the TMigrate routine.

6.2 Thread Migrations

Figure 10 shows the number of inter-core thread migrations per
billion retired instructions. The baseline system employs the stan-
dard Linux scheduler. Linux’s scheduler tries to allocate the same
amount of work to all cores and it migrates a thread from one core
to another only if there is a significant imbalance of work across
cores. Since almost all threads of the considered benchmarks are
uniformly stressed, we observe minimal thread migrations in the
baseline system. In contrast, the core specialization techniques mi-
grate threads too often. It must be noted that migrating a thread from
one core to another does not decrease its performance if there is a
concomitant increase in instruction and data locality. Hence, in spite
of an increased number of thread migrations, owing to fine-grained
scheduling decisions and a smart work stealing algorithm, SchedTask
outperforms other techniques.

6.3 Impact of the Workload on Performance

Table 4 shows the impact of a benchmark’s workload on the idle time
fraction and the instruction throughput of different core specializa-
tion techniques. 1X refers to the ensemble of individual workloads
as described in Section 4.2 and 2X refers to two times this workload.

1X: The idle time fraction of all techniques is high for a 1X
workload. While the SelectiveOffload technique gives the best per-
formance, it also employs twice the number of cores as compared
to other techniques. As mentioned in Section 6.1, FlexSC performs
poorly for single threaded benchmarks. For multi-threaded bench-
marks, FlexSC outperforms DisAggregateOS and SLICC by 10-15
percentage points, primarily on account of its low core idleness.
The results clearly show that DisAggregateOS and SLICC are not
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Figure 10: Number of inter-core thread migrations

suitable for servers that have less work. As discussed in Section 6.1,
SchedTask has low core idleness and a high i-cache hit rate. Hence,
in spite of a higher idle time fraction than that of FlexSC, SchedTask
outperforms FlexSC even for multi-threaded benchmarks.

2X: As we increase the workload from 1X to 2X, the idle time
fractions of DisAggregateOS, SLICC, and SchedTask drop signifi-
cantly. Due to fine-grained core mapping, both SLICC and Sched-
Task outperform the SelectiveOffload technique (SchedTask being
the best).

For 4X and 8X workloads, the idle time fraction for all techniques
except SelectiveOffload is almost 0%. For such workloads, the tech-
nique with the most fine-grained core mapping and the best work
stealing strategy will perform the best. Hence, despite having almost
the same idle time fraction, SchedTask outperforms DisAggregateOS
and SLICC.

Conclusion: For 4X and 8X workloads SchedTask is still the best.
Beyond an 8X workload, we observe that the d-cache pollution
among application as well as OS threads becomes high. This leads
to lower performance and is counter productive.

6.4 Impact of Work Stealing

Figures 9a, 9b, and 9c¢ show the impact of different work stealing
strategies on the instruction throughput, idle time fraction and the
overall i-cache hit rate respectively. The first strategy is to not allow
an idle core to steal any work from other cores. Due to reduced
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Figure 11: Impact of the size of the Page-heatmap register on the
quality of its ranking

i-cache pollution between different SuperFunctions, the i-cache hit
rate for this strategy is high. However, there are periods of time
when all threads and applications execute the same SuperFunction
and hence, they wait in the runnable queue of just one or two cores;
thereby leading to a high idle time fraction of 19%. The other two
bars represent the performance of the two levels of work stealing
that we discussed in Section 5.3.

As Steal same work only strategy steals SuperFunctions with the
same instruction footprint as allotted to the local core, it does not
increase i-cache pollution and still reduces the idle time fraction of
cores by around 0.7% (compared to no work stealing). SchedTask
tries the Steal similar work also strategy only if the Steal same work
only strategy does not have any SuperFunction to execute. This
strategy reduces the idle time fraction of FileSrv by a massive 45%.
We note that FileSrv executes a lot of bottom-half handlers (see
Figure 4) whose average length is around 24,000 instructions. In the
Steal same work only strategy, most threads in the system wait to
execute their bottom half handler. Since this strategy ensures that an
idle core always tries to steal similar SuperFunctions first, it reduces
the i-cache hit rate by a small amount (around 1%). However, this is
adequately compensated by reducing the core idleness to almost 0%.
Hence, SchedTask uses this as the default work stealing strategy. An
alternate strategy is to focus only on core idleness: always steal work
from the core with the maximum waiting time. However, this strategy
causes higher i-cache pollution and hence has modest performance
benefits (mean: 10.77%).

6.5 Impact of the Page-heatmap Register

As discussed in Section 3.2, we use a Bloom filter to approximate
the set of i-cache lines that two superFuncType’s have in common.
Given a superFuncType, we compute its Hamming weight against
each other superFuncType and then compute a ranking (ordered
list of superFuncTypes in decreasing order of Hamming Weight).
We measure the effectiveness of this approximation (using a Bloom
filter) by comparing the quality of its ranking against one generated
using the actual set of i-cache line addresses. We compare two
ranked lists using the Kendall’s rank correlation coefficient tg [34];
its value ranges from -1 (opposite ranking) to +1 (same ranking).
Figure 11 shows the value of 7p for different sizes of the Page-
heatmap register. An exponential increase in the size of this register
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leads to a linear increase in its Tg. However, the mean performance
benefits of SchedTask with different sizes of the Page-heatmap reg-
ister do not follow the same trend: 128 bits (15.87%), 256 bits
(19.37%), 512 bits (22.79%), 1024 bits (22.63%), and 2048 bits
(22.71%). The performance benefits for a Page-heatmap register of
1024 and 2048 bits are lower than that for 512 bits because of two
reasons: (1) increased d-cache pollution for TAlloc and TMigrate
routines, and (2) fewer chances of stealing SuperFunctions with
higher overlap values at run time. Hence, we choose a Page-heatmap
register of 512 bits in all our experiments. The mean performance
benefit while using the ideal ranking and not facing any d-cache
pollution is 24.99%.

7 CONCLUSION

In this work, we proposed SchedTask, a fine-grained scheduling
scheme for OS-intensive applications. We began by decomposing the
combined execution of the OS and the applications into sequences
of instructions called SuperFunctions. We proposed a hardware tech-
nique (Bloom filter of 512 bits per core) to identify the overlap
between the instruction sequences of different types of SuperFunc-
tions. We then proposed a hierarchical scheduler that schedules
similar SuperFunctions on each core. Our scheduler also contains
a novel work stealing algorithm that reduces i-cache misses and
also reduces the core idleness. Through extensive evaluation over a
suite of 8 OS-intensive applications, we demonstrated a performance
improvement of up to 29 percentage points (mean: 11.4 p.p.) over
the nearest competing state of the art proposal, (SLICC [7]), in this
area.
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Abstract

The instruction footprint of OS-intensive workloads such
as web servers, database servers, and file servers typically
exceeds the size of the instruction cache (32 KB). Con-
sequently, such workloads incur a lot of i-cache misses,
which reduces their performance drastically. Several pa-
pers [6, 18], 15 [2} 3] have proposed to improve the perfor-
mance of such workloads using core specialization. In
this scheme, tasks with different instruction footprints are
executed on different cores. In this report, we study the
performance of five state of the art core specialization
techniques: SelectiveOffload (6], FlexSC [8], DisAggre-
gateOS (3], SLICC [2], and SchedTask (3] for different
system parameters. Our studies show that for a suite of
8 popular OS-intensive workloads, SchedTask performs
best for all evaluated configurations.

1 Multi-programmed Workloads

We compare the impact of all core specialization tech-
niques on a server that is executing multiple OS-intensive
applications. ~ Table [I] shows the constituent bench-
marks and their workloads for each multi-programmed
workload, and Figure |I| shows the impact of different
core specialization techniques on the weighted instruc-
tion throughput of each multi-programmed workload. We

*The author contributed to this work while at Indian Institute of Tech-
nology Delhi

Bag ID Constituent benchmarks Workload of
individual
benchmark

MPW-A DSS, FileSrv 1X

MPW-B Apache, OLTP 1X

MPW-C Apache, DSS, FileSrv, Iscp 0.5X

MPW-D Apache, DSS, Find, OLTP 0.5X

MPW-E Find, FileSrv, Iscp, Oscp 0.5X

MPW-F Apache, FileSrv, MailSrvlO, OLTP 0.5X

Table 1: Constituent benchmarks of multi-programmed
workloads
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Figure 1: Impact of different techniques on the instruc-
tion throughput of a system executing multi-programmed
workloads

start by allocating equal number of cores for each bench-
mark and then let the scheduling techniques decide the
appropriate number of cores to execute the constituent
tasks of each multi-programmed workload. The mean
improvement in the weighted instruction throughput for
these techniques is: SelectiveOffload (21.48%), FlexSC (-
2.26%), DisAggregateOS (9.47%), SLICC (5.64%), and
SchedTask (23.94%). The primary point to note from Fig-
ure [T] is that the performance of SLICC is low for multi-
programmed workloads. This is an artifact of SLICC’s
thread decomposition policy, which does not group com-
mon portions of OS execution across different applica-
tions. FlexSC, DisAggregateOS, and Schedlask group
system calls based on their IDs. Hence, for these tech-
niques, there is a high correlation between their per-
formance of a multi-programmed workload and its con-
stituent benchmarks.



iSize Technique Find Iscp Oscp Apache DSS FileSrv MailSrvIO OLTP geom. mean
iHit Perf | iHit | Perf | iHit Perf | iHit Perf | iHit | Perf | iHit Perf | iHit | Perf | iHit Perf | iHit | Perf
SelectiveOffload | 1 10 1 21 1 12 1 31 3 5 0 6 1 0 4 11 1 12
FlexSC 7 -48 6 -40 6 -50 -1 12 1 6 1 25 2 12 2 10 3 -14
16 KB DisAggregateOS| 2 0 1 14 1 10 2 20 3 6 1 16 3 0 4 9 2 9
SLICC 1 4 1 24 1 12 1 1 2 5 1 15 2 0 2 11 1 8
SchedTask 2 11 1 40 1 23 2 44 2 10 1 34 2 28 3 17 1 25
SelectiveOffload | 2 7 2 21 1 8 2 27 3 5 1 4 3 0 3 9 2 10
FlexSC 10 -51 7 -44 6 -56 -1 7 2 6 2 29 2 12 1 4 3 -18
32 KB DisAggregateOS| 3 -2 2 16 1 4 4 20 3 6 2 20 5 4 3 6 3 9
SLICC 4 3 2 28 1 7 3 9 1 5 1 20 3 2 2 13 2 11
SchedTask 4 7 3 39 1 15 4 38 3 10 2 44 4 28 3 12 3 23
SelectiveOffload | 3 6 3 22 2 6 4 26 0 5 1 5 3 -1 2 8 2 9
FlexSC 8 -52 6 -45 4 -57 1 8 0 6 1 23 2 12 1 4 3 -19
64 KB DisAggregateOS| 5 -1 4 16 2 3 8 22 0 6 1 27 4 5 3 5 3 10
SLICC 5 4 3 33 2 7 8 21 0 6 1 26 2 5 3 19 3 15
SchedTask 5 6 4 39 2 13 8 37 0 11 1 36 3 28 2 13 3 22

[ iSize is the size of the i-cache. iHit and Perf are the change (%) in i-cache hit rate and the instruction throughput respectively relative to the baseline with the same i-cache size

|

Table 2: Impact of the size of the instruction cache on the instruction cache hit rate and instruction throughput

2 Instruction Cache Size

Table[2]shows the impact of the i-cache size on the i-cache
hit rate and the instruction throughput derived by all core
specialization techniques. We evaluate all techniques for
the following three i-cache configurations: 4-way 16 KB,
4-way 32 KB, and 4-way 64 KB. A baseline system with
a smaller i-cache incurs more cache misses and therefore,
the core specialization techniques can improve instruc-
tion throughput better. Our proposed technique improves
throughput by 25%, 23%, and 22% over the baseline for a
16 KB, 32 KB, and a 64 KB i-cache system, respectively.
This results in a performance improvement of 13%, 12%,
and 7% respectively over the best state of the art tech-
niques.

3 Cache Configuration

Table |3| describes three cache configurations (Configl,
Config2, and Config3) and their impact on the instruction
throughput of all techniques. Configl and Config2 have
two levels of cache hierarchy whereas Config3 has three
levels of cache hierarchy. Since the performance bene-
fit derived by a core specialization technique is directly
proportional to the i-cache miss penalty, the performance
of all techniques is the least for Config2 and the most for
Configl. Our proposed technique improves throughput by
24%, 21%, and 23% over the baseline for a system with
Configl, Config2, and Config3 cache configurations re-

spectively. This results in a 7, 6, and 12 percentage point
enhancement in performance (respectively) over the best
existing techniques.

4 Number of Cores

Table[dshows the impact of the number of cores on the in-
struction throughput of different core specialization tech-
niques. We evaluate all the techniques for the following
four systems: system with 8 cores, system with 16 cores,
system with 24 cores, and a system with 32 cores. We do
not consider a system with less than 8 cores because such
a system is not practical for the OS-intensive server-class
workloads that we consider. Our proposed technique im-
proves throughput by 18%, 27%, 27%, and 23% over the
baseline for a system with 8 cores, 16 cores, 24 cores, and
32 cores respectively. This results in 3, 9, 12, and 12 per-
centage points enhancements, respectively, over the best
existing techniques.

5 Instruction Prefetcher

Figure [2| shows the impact of core specialization tech-
niques on the instruction throughput when the baseline
system employs a hardware instruction prefetcher. We
use the hardware-only mode (CGHC-2K+32K) of the Call
Graph Prefetcher (CGP) [1] as the instruction prefetcher.
We use CGP because its hardware overheads are not



Find [ Iscp [ Oscp [ Apache [ DSS [ FileSrv [ MailSrvIO [ OLTP [

geom. mean

|

Cache configuration Technique } Change in the instruction throughput (%) relative to the baseline system with the same cache configuration |
SelectiveOffload | -1 18 14 18 9 13 17 12 12
FlexSC -57 -51 -60 17 1 11 20 8 -21
Configl DisAggregateOS| -7 9 10 0 2 16 25 9 7
SLICC 3 27 16 20 6 18 15 18 15
SchedTask 11 36 21 38 2 30 33 14 23
SelectiveOffload | -2 16 14 16 10 10 13 10 11
FlexSC -59 -53 -61 15 1 12 19 5 -23
Config2 DisAggregateOS| -9 1 0 18 2 10 21 8 6
SLICC 1 25 16 18 5 18 11 15 13
SchedTask 7 33 20 31 2 27 28 10 19
SelectiveOffload 7 21 8 27 5 4 0 9 10
FlexSC -51 -44 -56 7 6 29 12 4 -18
Config 3 DisAggregateOS| -2 16 4 20 6 20 4 6 9
SLICC 3 28 7 9 5 20 2 13 11
SchedTask 7 39 15 38 10 44 28 12 23
Configl — Private caches i-cache and d-cache: (4-way 32 KB. latency = 3 cycles)
Shared cache L2 cache: (8-way 8 MB. latency = 18 cycles)
Config2  — Private caches i-cache and d-cache: (4-way 32 KB. latency = 3 cycles)
Shared cache L2 cache: (8-way 8 MB. latency = 8 cycles)
Config3  — Private caches i-cache and d-cache: (4-way 32 KB. latency = 3 cycles), L2 cache: (4-way 256 KB. latency = 8 cycles)
] Shared cache L3 cache: (8-way 8 MB. latency = 18 cycles)
Table 3: Impact of the cache configuration on the instruction throughput
’ scores Techni [ Find [ Iscp [ Oscp | Apache | DSS [ FileSrv | MailSrvIO [ OLTP [ geom. mean |
que - - - - - -
[ Change in the instruction throughput (%) relative to the baseline system with the same number of cores |
SelectiveOffload | 14 22 17 48 5 2 -1 17 15
FlexSC -24 -26 -41 13 6 5 12 3 -8
8 cores DisAggregateOS| -17 -14 -16 0 -10 -19 -28 -1 -14
SLICC -5 -13 -4 -3 -10 -11 -5 -6
SchedTask 20 24 10 36 9 16 22 12 18
SelectiveOffload | 19 27 26 47 4 6 0 23 18
FlexSC -24 -24 -40 13 5 4 15 13 -7
16 cores | DisAggregateOS| -1 -10 -14 3 -5 -15 -23 4 -8
SLICC 17 6 -2 3 3 -3 -4 8 3
SchedTask 32 37 22 51 8 17 31 26 27
SelectiveOffload | 15 29 16 40 5 6 0 15 15
FlexSC -45 -35 -53 11 8 22 13 10 -13
24 cores | DisAggregateOS| -4 1 -1 6 0 2 -12 4 0
SLICC 25 6 6 8 9 0 13 9
SchedTask 15 47 23 51 13 27 28 18 27
SelectiveOffload 7 21 8 27 5 4 0 9 10
FlexSC -51 -44 -56 7 6 29 12 4 -18
32 cores | DisAggregateOS| -2 16 4 20 6 20 4 6 9
SLICC 28 7 9 5 20 2 13 11
SchedTask 7 39 15 38 10 44 28 12 23

Table 4: Impact of the number of cores on the instruction throughput
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Figure 2: Impact of the instruction prefetcher on the in-
struction throughput

very high and it is shown to give better performance
than the classical instruction prefetchers such as next-line
prefetcher and correlation-based prefetcher [7]. We ob-
serve that CGP reduces the number of i-cache misses by
20-30% and thus improves the performance of a system
without an instruction prefetcher by around 4-5 ‘7 Since
a baseline system with CGP incurs fewer i-cache misses,
the scheduling techniques gain lesser by improving the in-
struction locality. The mean improvements in the instruc-
tion throughput of the system after employing CGP are:
SelectiveOffload (8.37%), FlexSC (-20.93%), DisAggre-
gateOS (8.57%), SLICC (4.28%), and SchedTask (19.6%).

6 Trace Cache

Figure [3] shows the impact of core specialization tech-
niques on the instruction throughput when the baseline
system employs a trace cache. We use the trace cache im-
plementation that was proposed in [4]. We observe that
since the instruction footprints of the considered work-
loads are very large (>250KB), traces belonging to dif-
ferent SuperFunctions keep evicting each other from the
shared trace cache. Hence, the performance gains derived
by using core specialization techniques do not change

'The original paper [I] uses a 2-level memory hierarchy only and
hence it enhances performance more

Figure 3: Impact of the trace cache on the instruction
throughput

much for a system employing a trace cache versus one that
does not employ a trace cache. For a system that employs
a trace cache, the mean performance gains derived by dif-
ferent techniques are: SelectiveOffload (7.2%), FlexSC (-
20.38%), DisAggregateOS (6.67%), SLICC (8.04%), and
SchedTask (20.6%).

7 Conclusion

In this report, we studied the sensitivity of five state of the
art core specialization techniques to multi-programmed
workloads, cache configurations, instruction prefetchers,
and trace-cache. Our studies show that SchedTask [3]] out-
performs other techniques [6, 8} 15, 2] for all evaluated
configurations. This is because SchedTask employs a fine-
grained task scheduler and a superior work stealing algo-
rithm.
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